Chap 5: Figures planes

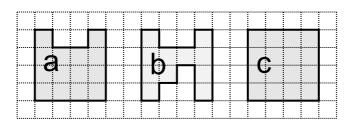
1) Les polygones

Définition : Un polygone est une ligne brisée fermée, c'est-à-dire d'une suite de segments.

Définition : Le périmètre d'une figure est la longueur de son contour.

Propriété : Le périmètre d'un polygone est égal à la somme des longueurs de ses côtés.

Exemple : Classer les figures suivantes par ordre croissant de leur périmètre :



Réponse : $\mathscr{P}(c) < \mathscr{P}(a) < \mathscr{P}(b)$

Exercices 1; 2 et 3 de la page 150

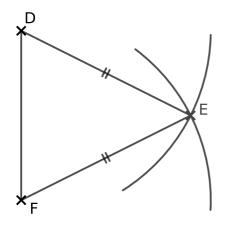
Exercice 1 de la page 99

2) Les triangles

Définition : Un triangle est un polygone a trois côtés.

2.1) Triangle isocèle

Définition : Un triangle isocèle est un triangle qui a deux côtés de la même longueur.



DEF est un triangle isocèle en E

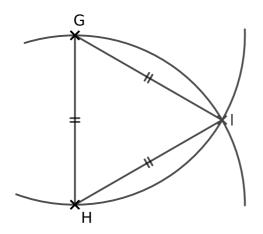
[FD] se nomme la base.

E est le sommet principal.

EF = ED

2.2) Triangle équilatéral

Définition : Un triangle équilatéral est un triangle qui a ses trois côtés de la même longueur.

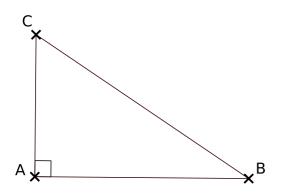


GHI est un triangle équilatéral

IG = GH =HI

2.3) Triangle rectangle

Définition : Un triangle rectangle est un triangle qui a un angle droit.



ABC est un triangle rectangle en A.

[AB] et [AC] sont les côtés de l'angle droit.

Le côté [BC] se nomme l'hypoténuse.

Exercices 3 et 4 de la page 101 puis exercice 2 page 151

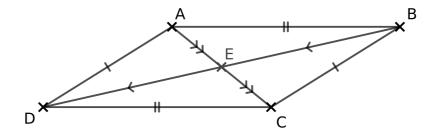
3) Quadrilatère

Définition : Un quadrilatère est un polygone a quatre côtés.

Exercices 1; 2 et 3 de la page 102

3.1) Parallélogramme

Définition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles.



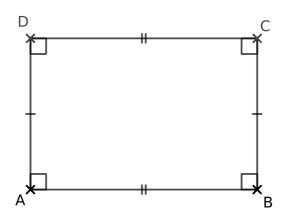
Propriétés : Dans un parallélogramme :

- les côtés opposés sont parallèles et ont la même longueur,
- les diagonales se coupent en leur milieu.

Exercice 1 de la page 103

3.2) Rectangle

Définition : Un rectangle est un quadrilatère qui a quatre angles droits.



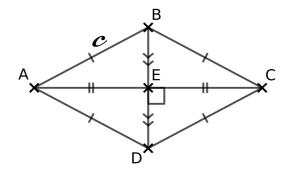
Propriétés : Dans un rectangle :

- les côtés opposés sont parallèles et ont la même longueur,
- les diagonales ont la même longueur et se coupent en leur milieu,
- périmètre : $\mathscr{P}(\mathrm{rectangle}) = 2 \times L + 2 \times l$

Exercices 5; 6 et 7 de la page 151

3.3) Losange

Définition : Un losange est un quadrilatère qui a quatre côtés de la même longueur.



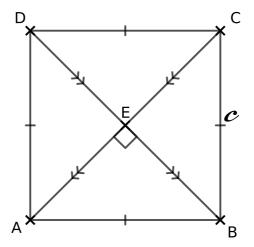
Propriétés : Dans un losange :

- les côtés opposés sont parallèles.
- les diagonales sont perpendiculaires et se coupent en leur milieu.
- Le périmètre d'un losange de côté c est : $\mathscr{P}(\mathrm{losange}) = 4 imes c$

Exercices 4 et 5 de la page 103

3.4) Carré

Définition : Un carré est un quadrilatère qui a ses quatre côtés de la même longueur et qui a quatre angles droits.



Propriétés : Dans un carré :

- les côtés opposés sont parallèles et ont la même longueur,
- les diagonales ont la même longueur, se coupent en leur milieu et sont perpendiculaires.

Remarque : le carré est à la fois un rectangle et un losange.

Exercices 2 et 3 de la page 103 puis exercices 3 et 4 de la page 151

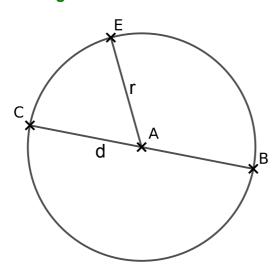
4) Longueur d'un cercle

En mathématiques, π désigne un nombre qui permet de calculer la longueur d'un cercle. π est une lettre de l'alphabet grec qui correspond au p de l'alphabet latin, π se prononce « pi ».

Remarque : π n'est pas un nombre décimal. Une valeur approchée de π est 3,141592653.

Search in Pi : https://www.angio.net/pi/whynotpi.html ou https://bit.ly/30DoVPZ

4.1) Calculer la longueur d'un cercle



Vidéo d'Yvan Monka:

https://bit.ly/3nlqmMG

La longueur $\mathscr L$ d'un cercle de diamètre d est : $\mathscr L$ (cercle) $=\pi\times d$

La longueur ${\mathscr L}$ d'un cercle de rayon r est : ${\mathscr L}$ $({
m cercle}) = 2 imes \pi imes r$

Exemple : Calculer la longueur exacte et la longueur approchée au millimètre d'un cercle de rayon 3 cm.

Remarque : Utiliser $\pi \approx 3, 14$.

Longueur exacte = $2 \times \pi \times rayon = 2 \times \pi \times 3 \ cm = 6 \times \pi \ cm$

La longueur d'un cercle de rayon 3 cm mesure exactement $6 imes \pi \ cm$

Longueur approchée $\approx 2 \times \pi \times rayon \approx 2 \times 3, 14 \times 3 \ cm \approx 18, 8 \ cm$

La longueur d'un cercle de rayon 3 cm mesure approximativement 18,8 cm.

Exercices 1; 2 et 3 de la page 154